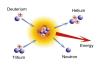
Period:_____


Due Date:_____

Chapter7: The discoveryof radiationand nuclearchemistry

- Nuclear chemistry is different than normal chemistry because the changes take place in the ______ of the atom.
- 2. What particles make up the nucleus of the atom? ______ and _____
- An isotope of an element has the same _____ but different number of _____. This make this variety _____ or _____ than

the more common variety of this element.

- 4. JJ Thomson discovered the ______ using a vacuum tube connected to a battery.
- These cathode tubes also produce _______. are not particles, but are like radio waves or light waves but have much shorter wavelengths and so much higher energy. They can ______ through matter.
- 6. Within a short time of their discovery, ______ were used for ______.
- 7. Radioactivity is a _____ process.
- 8. A French chemist and photographer Henri Becquerel discovered ______ when he was trying to ______ minerals of ______.
- 9. Ernest Rutherford named the first 3 types of ______. The least penetrating type is called ______. It has a ______ charge and a mass of ______. This is the same thing as a ______ only without ______. The next most penetrating type of radioactivity is the _______. The next most penetrating type of radioactivity is the _______. It is an _______ being shot out of a nucleus at high speed. Gamma radiation is _______
 - ______ it is super short wave length and highly energetic.
- 10. The release of energy and particles from the nucleus is called ______.
- 11. Many isotopes are not radioactive. They can be perfectly _____

Korte	emeier	Chpt 7 Lecture notes		
12.	When nuclei give off either	alpha or beta	They ch	ange into a different
	bec	ause the number of	C	hanges. This can be called
	radioactive			
13.	Radiation is strong enough to knock electrons off of other			
	atoms. This forms (atoms with a + or a – charge)			
14.	When writing nuclear decay reactions we must obey the Law of			of
	and the Law of	·	of	
15.	In an atomic symbol, the sul	bscript is the number	of	or the
	on the periodic table. It always must match the chemical			
16.	210 ₈₄ Po> 206 ₈₂ Pb +			
	By nuclear process it is possible for a radioactive element to into another			
	element. This the ancient alchemist's dream. It is now possible to turn a few atoms of lead into			
	gold. It would take a nuclear accelerator and millions of \$, but it can be done.			
	In one, one half the amount of radioactive material will decay or turn			
	into another element called			
19.	If an archaeologic sample was found to have 1/16 of the orginial carbon in it, it would take			
	half-lives			
20	When nuclear fission or nuc		e some of the	holding th
20.	atom together goes missing.			
21				
21.	This mass is converted into pure energy. The amount of energy can be calculated by Einstein's famous equation =			
22				atoms. This releases mor
22.	Fusion takes light isotopes a energy per atom than			atoms. This releases mor
•••				
	Stars get their energy from _			
24.	Stars die out when they proc		It can't be	or
	to get energy out.			
25.	is the name of splitting heavy isotopes to form lighter ones. This is the			
	power behind the	bomb and	pov	ver plants.